Real-Time & Embedded
Systems
Past, Present, and Future

Dr. Doug Locke
Locke Consulting, LL.C
www.doug-locke.com

nat is a real-time System?
nat is an embedded System?
nere have we come from?
nat have we achieved?

nere are we going?

=S === =

What is a Real-Time System?

. Correctness is a function of time?

Must respond to external device in less
than X microseconds?

Real-fast?

Missed deadline means catastrophic
result?

System should respond “instantaneously”

All of the above?
None of the above?

What is an Embedded System?

« Small device, like a cell phone?

« Small processor installed in some other
device, like a car?

« Software that controls a consumer device?
* Must have real-time response?
My favorite:

* Any system where the user doesn’'t want
to know that it includes a processor

e

Examples of Real-Time / Embedded Systems

« Car engine

» Cell phone

o Set-top box

» Car navigation
 |ndustrial control
* Telecom switch

* Global Positioning
System

e

Air Traffic Management
Satellite flight manager

Satellite Ground
Control

TV receliver
Flight control
Electric shaver
Toaster

nat is a real-time System?
nat is an embedded System?
nere have we come from?
nat have we achieved?

nere are we going?

C
=S === =

Uﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ00000BODUUUUDﬂﬂﬂﬂﬂ00DBDUﬂﬂﬂﬂﬂﬂ00000000000000000000

0
B O10N1213141516 17181920212223242526 27282930 313233343536 37383040 41424344 4546 47 484950 51 5253 54 55 56 57 58 5060 61626364 656667686910 71 1273 T4 75 16 T 787880
1

1]11111111111I11111l11111]11

0000
567
11

'
1
22
33
44
55
686656655666666666EGGEEBBBBGGEGBGBEBBBEEBEBBEBBBBGEBBGBBBBBEBESGGBBGBGSBGGGGGSBG
71777777777777777177777777777717777777777777777771777771777777777717177777777777
88888888888888BBSBBB!BBBSBBB888880888388888338888338!888888888888888888038888880
999999933 999999999999999999989999999999999999999999999989893939
1234567829 nnmn

2 252577282930313233343535373839404142434445‘64748495051525’354555&575859806182536455555?5859 BIATSTE
M 50

Model 029 Keypunch

=
&
S
~
—
m

System/360 Model 40

System/360 Model 50

12

i
@
@

e
-
©

d
©

14

2

o

w

LAMPS Mark lil

Ticonderoga Class (USS San Jacinto, CG-56)

16

L
=
>
r=
N
@
O
©
Q.
N
<{
N
<
<

E
o
£
©
—
<
')
<
<

Embedded Computer Capacities

 Memory Size:

1970
1975
1980
1985
1990
1995

— 2000
* Increasing variability throughout this time

e

3-32KB
16-64KB
64-128KB
128-1MB
1-4MB
2-32MB
4-128MB

CPU Speed:
128 KIPS
1.2 MIPS
5 MIPS
20 MIPS
50 MIPS
150 MIPS
800 MIPS

20

Size of Large Embedded Software

* How large is “large”:

1970
1975
1980
1985
1990
1995

— 2000
* Increasing variability throughout this time

e

M S
2M S
4M S
4M S
4M S

10K SLOC
150K SLOC

_LOC
_LOC
_LOC
_OC (increasing component use)

_OC (increasing component use)

21

Time Constraints

» Shortest Time Constraints Reliably
Achievable:

— 1970 50 milliseconds

— 1975 1 millisecond

— 1980 500 microseconds
— 1985 100 microseconds
— 1990 50 microseconds
— 1995 10 microseconds
— 2000 5 microsecond

e 22

Embedded Systems Proliferation

* Applications:

1970
1975
1980
1985
1990
1995
2000

Military / Aerospace

Factory Automation / Telecom
Consumer Electronics

Wireless Telecom / Automotive

Games / Toys / Entertainment / Internet
Appliances

RFID

23

nat is a real-time System?
nat is an embedded System?
nere have we come from?
nat have we achieved?

nere are we going?

=S === =

What Was (Is Still) the Biggest Challenge?

* Exponentially increasing capacity

* Exponentially increasing software size
and complexity

 Linearly increasing pool of developers

* Fixed or decreasing budgets

* The big problem — how to build
exponentially more systems, and
exponentially more complex systems
with linearly increasing labor.

e 25

A Major Problem - But Not New

Strange game — the only way to win is not to
play' - Joshua in the movie Wargames

Only way to produce complex software:

— Avoid writing, testing, documenting code
« Use Commercial Off-The Shelf (COTS)

« E.g.,, RTOS, CORBA, Database, Web-based,
Automated tools, reuse existing code

* Unintended consequence
— Performance problems

e 26

Present RT/Embedded Challenges

Top Three Problems:

 Managing software engineering
organizations

U Ensuring development of a performance-
relevant architecture

* Finding suitable tools (language, COTS,
analysis, simulation)

e

27

A Taxonomy of Real-Time Architectures

« The vast majority of existing real-time applications
use one of four (overlapping) architectural types:
1. Timeline (a.k.a. cyclic executive or frame-based)
2. Event-driven (with both periodic and aperiodic activities)
3. Pipeline
4. Client-Server

Timeline or Cyclic Executive

1/0

1/0 1/0

1/0

[1 1

L] Procedure 1 alone
[] Procedure 1 and 2
] Procedure 1 and 3
L] Procedure 1 and 4

Cyclic Executive

Timer (e.g., 40 hz.,
25ms. period)

) H[WL‘L i

Procedure 1

Procedure 2| |Procedure 3

Procedure 4

40 Hz

BBy R, (8 (A CR U Ch (L]

e

20 Hz S Hz

1 Hz

29

I/0 —|Task 1 >
»>| Output 10
> Manager 1
I/O [—|Task 2 >
Clock |—|Task 3 _:
Olltpllt > 1/0
Clock[—|Task 4 : Manager 2

Tasks generally priority scheduled

e 30

/O —> Message
Handler =1 Output Jd 10
v —> Manager 1
Msg i
‘ Filter
v
Clock Correlator x
Output S| 10
—> M 2
Clock 1 Periodic anaser
Generator

Tasks usually ad-hoc scheduled

e 37

Client-Server

Message

/O Handler l,
vA

1/0 — 3 Filter

vA
Clock Correlator

Output
Manager 1

—> 1/0

1

Output
Manager 2

—> 1/0

[

Clock [Periodic
Generator

Tasks usually ad-hoc scheduled

e 32

Architecture Summary

* None of the architectures described are free of problems
— Timeline is extremely expensive to integrate and maintain
— Event-driven model is predictable for relatively static designs

— Pipelines commonly result in non-preemptive delays (i.e., priority
or policy inversion), few tools for predictable response

— Client Server infrastructures perform similarly to pipelines except
concurrency can be much more limited.

« The Bottom Line: Architecture decisions have a major
effect on

— Performance

— Safety

— Fault Tolerance
— Life Cycle Cost

33

IEEE Computer Society TC-RT

« What has our community produced?

* Quite a lot - a few examples:
— Rate (Deadline) Monotonic Scheduling
— Utility (or Value) Function Scheduling
— Many other scheduling paradigms (e.g., EDF)
— Imprecise Computations
— Fault Tolerant Computing (e.g., Simplex)
— Real-Time Databases

 We have had considerable influence
— POSIX
— Real-Time CORBA
— Real-Time Linux
— Ada 95, Real-Time Java

« But much of our contribution isn’t widely known

34

nat is a real-time System?
nat is an embedded System?
nere have we come from?
nat have we achieved?

nere are we going?

=S === =

Where Are We Going?

* Resources are still limited
— Therefore they will still need careful management
— Scheduling still matters

* "Non-functional” requirements are now the
primary focus of most designs

— Real-time response

— Fault tolerance

— Availability

— Quality of Service

— Power Management

— Security

— Cost (people cost + resource cost)

 This is where we continue to make a difference

e 36

Doug Locke
Locke Consulting, LL.C
www.doug-locke.com

	RTAS Keynote

