
1

RealReal--Time & Embedded Time & Embedded 
Systems Systems 

Past, Present, and FuturePast, Present, and Future
Dr. Doug Locke

Locke Consulting, LLC
www.doug-locke.com



2

OutlineOutline

• What is a real-time System?
• What is an embedded System?
• Where have we come from?
• What have we achieved?
• Where are we going?



3

What is a RealWhat is a Real--Time System?Time System?
1. Correctness is a function of time?
2. Must respond to external device in less 

than X microseconds?
3. Real-fast?
4. Missed deadline means catastrophic 

result?
5. System should respond “instantaneously”
6. All of the above?
7. None of the above?



4

What is an Embedded System?What is an Embedded System?

• Small device, like a cell phone?
• Small processor installed in some other 

device, like a car?
• Software that controls a consumer device?
• Must have real-time response?
My favorite:
• Any system where the user doesn’t want 

to know that it includes a processor



5

Examples of RealExamples of Real--Time / Embedded SystemsTime / Embedded Systems

• Car engine
• Cell phone
• Set-top box
• Car navigation
• Industrial control
• Telecom switch
• Global Positioning 

System 

• Air Traffic Management
• Satellite flight manager
• Satellite Ground 

Control
• TV receiver
• Flight control
• Electric shaver
• Toaster



6

OutlineOutline

• What is a real-time System?
• What is an embedded System?
• Where have we come from?
• What have we achieved?
• Where are we going?

ü



7

Punch CardPunch Card



8

Model 029 KeypunchModel 029 Keypunch



9

IBM 7090IBM 7090



10

System/360 Model 40System/360 Model 40



11

System/360 Model 50System/360 Model 50



12

LAMPS Mark ILAMPS Mark I



13

LAMPS Radar TestLAMPS Radar Test



14

LAMPS Mark IIILAMPS Mark III



15



16

Ticonderoga Class (USS San Jacinto, CGTiconderoga Class (USS San Jacinto, CG--56)56)



17

AWACSAWACS



18

NASA Space ShuttleNASA Space Shuttle



19

NASA Mariner 10NASA Mariner 10



20

Embedded Computer CapacitiesEmbedded Computer Capacities

• Memory Size:
– 1970 8-32KB
– 1975 16-64KB
– 1980 64-128KB
– 1985 128-1MB
– 1990 1-4MB
– 1995 2-32MB
– 2000 4-128MB

• Increasing variability throughout this time

CPU Speed:
128 KIPS
1.2 MIPS
5 MIPS
20 MIPS
50 MIPS
150 MIPS
800 MIPS



21

Size of Large Embedded SoftwareSize of Large Embedded Software

• How large is “large”:
– 1970 10K SLOC
– 1975 150K SLOC
– 1980 1M SLOC
– 1985 2M SLOC
– 1990 4M SLOC
– 1995 4M SLOC (increasing component use)
– 2000 4M SLOC (increasing component use)

• Increasing variability throughout this time



22

Time ConstraintsTime Constraints

• Shortest Time Constraints Reliably 
Achievable:
– 1970 50 milliseconds
– 1975 1 millisecond
– 1980 500 microseconds
– 1985 100 microseconds
– 1990 50 microseconds
– 1995 10 microseconds
– 2000 5 microsecond



23

Embedded Systems ProliferationEmbedded Systems Proliferation

• Applications:
– 1970 Military / Aerospace
– 1975 Factory Automation / Telecom
– 1980 Consumer Electronics
– 1985 Wireless Telecom / Automotive
– 1990 Games / Toys / Entertainment / Internet
– 1995 Appliances
– 2000 RFID



24

OutlineOutline

• What is a real-time System?
• What is an embedded System?
• Where have we come from?
• What have we achieved?
• Where are we going?
ü



25

What Was (Is Still) the Biggest Challenge?What Was (Is Still) the Biggest Challenge?

• Exponentially increasing capacity
• Exponentially increasing software size 

and complexity
• Linearly increasing pool of developers
• Fixed or decreasing budgets
• The big problem – how to build 

exponentially more systems, and 
exponentially more complex systems 
with linearly increasing labor.



26

A Major Problem A Major Problem –– But Not NewBut Not New

Strange game – the only way to win is not to 
play! - Joshua in the movie Wargames

Only way to produce complex software:
– Avoid writing, testing, documenting code

• Use Commercial Off-The Shelf (COTS)
• E.g., RTOS, CORBA, Database, Web-based, 

Automated tools, reuse existing code

• Unintended consequence
– Performance problems



27

Present RT/Embedded ChallengesPresent RT/Embedded Challenges

Top Three Problems:
• Managing software engineering 

organizations
• Ensuring development of a performance-

relevant architecture
• Finding suitable tools (language, COTS, 

analysis, simulation)

ü



28

A Taxonomy of RealA Taxonomy of Real--Time ArchitecturesTime Architectures

• The vast majority of existing real-time applications 
use one of four (overlapping) architectural types:
1. Timeline (a.k.a. cyclic executive or frame-based)
2. Event-driven (with both periodic and aperiodic activities)
3. Pipeline
4. Client-Server



29

Timeline or Cyclic ExecutiveTimeline or Cyclic Executive

Timer (e.g., 40 hz.,
25ms. period)

Cyclic Executive

Procedure 1
40 Hz

Procedure 2
20 Hz

Procedure 3
5 Hz

Procedure 4
1 Hz

I/O I/O I/O I/O

Procedure 1 alone

Procedure 1 and 4
Procedure 1 and 3
Procedure 1 and 2



30

EventEvent--DrivenDriven

Task 1

Task 2

Task 3

Task 4

I/O

I/O

Clock

Clock

Output 
Manager 1

Output 
Manager 2

I/O

I/O

Tasks generally priority scheduled



31

PipelinePipeline

I/O

Msg

Clock

Clock

Tasks usually ad-hoc scheduled

Output 
Manager 1

I/O

I/OOutput 
Manager 2

Message 
Handler

Periodic 
Generator

Correlator

Filter



32

ClientClient--ServerServer

I/O

I/O

Clock

Clock

Output 
Manager 1

I/O

I/OOutput 
Manager 2

Message 
Handler

Periodic 
Generator

Correlator

Filter

Tasks usually ad-hoc scheduled



33

Architecture SummaryArchitecture Summary
• None of the architectures described are free of problems

– Timeline is extremely expensive to integrate and maintain
– Event-driven model is predictable for relatively static designs
– Pipelines commonly result in non-preemptive delays (i.e., priority 

or policy inversion), few tools for predictable response
– Client Server infrastructures perform similarly to pipelines except 

concurrency can be much more limited.

• The Bottom Line: Architecture decisions have a major 
effect on 
– Performance
– Safety
– Fault Tolerance
– Life Cycle Cost



34

IEEE Computer Society TCIEEE Computer Society TC--RTRT
• What has our community produced?
• Quite a lot - a few examples:

– Rate (Deadline) Monotonic Scheduling
– Utility (or Value) Function Scheduling
– Many other scheduling paradigms (e.g., EDF)
– Imprecise Computations
– Fault Tolerant Computing (e.g., Simplex)
– Real-Time Databases

• We have had considerable influence
– POSIX
– Real-Time CORBA
– Real-Time Linux
– Ada 95, Real-Time Java

• But much of our contribution isn’t widely known



35

OutlineOutline

• What is a real-time System?
• What is an embedded System?
• Where have we come from?
• What have we achieved?
• Where are we going?ü



36

Where Are We Going?Where Are We Going?
• Resources are still limited

– Therefore they will still need careful management
– Scheduling still matters

• “Non-functional” requirements are now the 
primary focus of most designs
– Real-time response
– Fault tolerance
– Availability
– Quality of Service
– Power Management
– Security
– Cost (people cost + resource cost)

• This is where we continue to make a difference



37

Doug Locke
Locke Consulting, LLC
www.doug-locke.com


	RTAS Keynote

