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Abstract. While there are appear to be many ways in which real-time Ada sys-
tems can be designed, it is observed that they can be described using four archi-
tectural families: the Timeline, Event-Driven, Pipeline, and Client-Server archi-
tectures. This paper describes the principal characteristics of each of these ar-
chitecture families with respect to their ability to provide bounded application re-
sponse times, their cost, and safety at a high level. In addition, the use of impor-
tant Ada constructs for each architecture family is discussed, and examples of
application domains that use each of these architectures are identified.

1 Introduction

There are probably as many ways to use the Ada language as there are system and software
architects and designers. The Ada language contains a number of very powerful constructs
that can be used as tools for the architect. This is especially true for the software architect
of a real-time system. The choice of Ada concepts to be used for a real-time application is
strongly affected by the underlying software architectural choices.

Regardless of whether Ada is being used as the programming language or not, there are
actually very few unique software architectures in general use by real-time software
architects. These basic architectures have their roots in various traditional approaches to
certain application domains, and they have naturally been carried over into systems for which
Ada is the primary language. In many cases, these architectures have become so entrenched
that the original reasons for their use has been lost in relative antiquity, and conscious
tradeoffs are no longer made when new applications in the same domain are considered.

It is the purpose of this paper to discuss these basic software architectures for real-time
systems used with (or without) Ada, comparing and contrasting them along several lines:
* The choices of Ada architectural constructs that are generally used for each
The ability of the resulting architecture to meet its real-time constraints
* The response of applications using that architecture to errors encountered during
system operation
®  Costs associated with the architecture
These discussions are, of course, somewhat subjective, but they are based on this author’s
experience working with a wide variety of systems over a long period of time. Nevertheless,
the reasoning on which these discussions are based should become clear, and it is expected
that the reader will be able to assess the basis for the conclusions drawn.

It is noted at the outset that virtually all the basic software architectures used in practical
real-time systems can be categorized at a high level into only four families, although in
practice there are a many variations of these. In this paper, we denote these architectural
families as:
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1. Timeline (sometimes called a cyclic executive)
2. Event-driven (with both periodic and aperiodic activities)
3. Pipeline
4. Client-Server
Each of these four architectural families will be discussed in some detail.

Once a system’s software architecture is defined, and when Ada has been chosen as the
implementation language, there are many decisions that must be considered. While this
paper cannot provide a definitive treatment of all of.these, some of the most important
architectural decisions involve: )

e  Ada Tasks (How many? How they should be used?) .
Communication (Shared memory? Messages? Protocols?) .
Synchronization (Protected objects? Rendezvous? Semaphores? Mutexes?)
Shared Data
Generics (Should thy be limited in some way?)
Package Size and Content
Exceptions (At what level should they be handled? What about “others”?)
Extent of Application-Specific Types (When should predefined types be
used, if at all?)

e Interface to Environment (e.g., POSIX, SQL, Motif, CORBA)
Of these decisions, only the first three will be discussed in this paper due to limited space.

In addition, it is instructive to illustrate how these decisions are frequently made in
application domains such as air traffic control, aircraft mission processors, vehicle
simulation systems, and flight control.

The remainder of this paper is organized into 4 sections. Section 2.0 contains an over-
view of each of the architectural families, while Section 3.0 discusses the major Ada
decisions involved for each family in the light of these application domains. Section 4.0
then contains a brief summary and conclusion.

2 A Taxonomy of Real-Time Architectures

It is-observed that virtually all real-time systems can be classified into four architectural
families. Although there are many variations within these families, each of the families
can be described in relatively concrete terms regarding the management of system
resources (e.g., CPU, memory, I/O, and communications) which characterizes the result-
ing application’s ability to meet its time constraints. Here, we discuss each of these
families individuaily.

2.1 Timeline

The timeline architecture is at once the oldest real-time architecture, and conceptually the
simplest. It is sometimes called a frame-based architecture because of its use of fixed
time frames within which all the application procedures are executed in some predeter-
mined sequence. It is also called a cyclic executive architecture because of its use of a
simple time-driven executive that manages all application procedure invocation using a
frame sequence table. i

Essentially, the timeline architecture requires dividing the application- into a fixed set of
procedures that are called sequentially by a relatively simple executive, triggered by a
timer set to expire at fixed intervals. At each time trigger, the executive uses the frame
sequence table to call the appropriate procedure to the handle tl?e task that is ready for
that interval. The individual time intervals are called frames or minor cycles. The fraJ.neS
are grouped into a fixed sequence that is then repeated throughout the system execution;

such a group is called a major cycle.

For example, consider the simple example illustrated in Figure 1.. Here, we have a trivial
application composed of four periodic procedures, each executing at rates of 4}0 Hz., 20
Hz., 5 Hz., and 1 Hz., respectively. The architect has chosen a frame, or minor cycle
length of 25 ms., which is equal to the fastest procedure's 40 Hz. rate. To meet all the
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requirements, the procedures are executed in groups as shown, such that procedure 1 is
executed every frame, procedure 2 is executed immediately following procedure 1 in the
first frame of each major cycle and every other frame thereafter, procedure 3 is executed
immediately following procedure 1 in the second frame and in every eighth frame there-
after, while procedure 4 is executed immediately following procedure 1 in the fourth
frame and in every 40" frame thereafter. In this way, each procedure is executed at its
required rate.

Note that this architecture has several interesting properties. First, there is never any need
for two procedures to execute concurrently, so there is no need for explicit synchroniza-
tion. Because there is no need for concurrency, there is no overhead paid for context
switching at the application level. Thus, at first sight, it appears that this architecture is
inherently quite efficient, which is generally considered to be a desirable quality for a
real-time architecture. Second, because it can be precisely determined at design time
exactly when each procedure is to be executed, the system can be said to be deterministic.




However, as noted in [1], these advantages remain largely illusory. Efficiency is not a
primary requirement for real-time systems, and neither is determinism. While efficiency
and determinism can be useful, they must frequently be compromised (slightly) in favor
of creating an architecture with predictable response behaviour. While it is true that a
deterministic system will be able to meet its timing constraints, it really isn't necessary to
precisely determine when each procedure is to be executed; rather it is sufficient that each
procedure be able to predictably meet its own response requirements. Further, while
eliminating concurrency and removing context switch overhead seems desirable, it can
readily be shown that it is easy to limit the blocking:delays caused by synchronization,
and to bound the overhead from context switches, particularly using Ada 95, so that it is
not necessary to eliminate them.

In fact, eliminating concurrency comes at an astonishingly high price. The timeline
architecture requires every procedure to fit comfortably into its frame. Even though there
may be (and frequeitly is) quite a bit of unused time available elsewhere in the schedule,

this unused time is unavailable to individual procedures. Thus, long-running tasks must

be manually broken into small procedures such that each will fit into the frame. This
really amounts to the programmer having to create preemption points manually, then
ensure for each resulting point that the task's state will remain sufficiently consistent
between invocations. In other words, the programmer must do manually, with error-prone
ad-hoc techniques, what any modern real-time operating system is much more capable of
doing automatically with fully predictable results[4].

2.2 Event-driven

Although the timeline approach to real-time systems architecture produces the most
common architectural style for real-time systems, probably the second most common
architectural style is the event-driven architecture. The event-driven design (see Figure
2) waits for indications that a message has arrived, an I/O operation has completed, a
timer has expired, or an external operation has resulted in an event such as a button
depression. In the Ada language, this is generally seen as a rendezvous accept or a
protected procedure invocation. In the event driven architecture, such events trigger the
execution of all of the program's computation.

Thu§ an event-driven architecture consists of a set of tasks, each awaiting an event, where
each task is provided with a priority. Task priorities are generally determined using either
the time constraints or the semantic importance associated with the job to be done. For
example, when an event arrives at a processor, an interrupt handler executing at interrupt
priority will typically handle it initially. In the best designs, this interrupt handler will then
execute for a minimal amount of time, triggering the execution of a secondary task. This
secondary task will then run at a user-defined priority associated either with the time
constraint associated with the event or based on its semantic importance alone.

The resulting event-driven architecture involves concurrency at the application level. This
means that individual operations running at their correct priorities may preempt each
other and results in the need for synchronization using such operations as the POSIX
mutex, semaphore, or an Ada protected object. This synchronization adds complexity to
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the application architecture, but this is counter-balanced by the fact that concurrency
increases the resource utilization levels at which the system can operate while meeting its

time constraints.

The event-driven paradigm results in a significant problem for the appligation designer
that is frequently overlooked until the later stages of system i‘ntegratlon, frequeptly
resulting in unpredictable response times. This problem results from th<.3 bursty arpval
pattern almost always associated with events (other than events rf:sultll_lg from t_1mer
expiration.) The most common mathematical model for such amvals'ls the Poisson
arrival distribution, in which the system load produced by a burst of arrivals cannot' be
bounded at a predictable level over any specific time interval, resulting in an unpredict-
able response time. This generally results in the most common type of real-time systems
failure: an intermittent “glitch” that leaves no trail, is unrepeatable, and frequently
exhibits different symptoms each time it is observed.

In response to their concerns over the system response time, designers usually Fry to
group together the total utilization generated by these random arrivals over a sufﬁc1e.ntly
long time interval to show that the system will achieve the average throughput required
to handle all of these arrivals. However, this architecture pattern makes it impossible to
predict the response time of individual event arrivals. This predictability problem can
ameliorated by using any of several bandwidth preserving algorithms such as the sporadic
server|[6], but otherwise the event-driven paradigm makes it difficult to produce a predict-
able response time with reasonable levels of utilization.
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2.3 Pipeline

The pipeline architecture is similar to the event-driven architecture, but is intended
specifically to take advantage of a distributed system by a allowing event arrivals to take
place at one processor for initial processing, then pushing additional processing off to
other tasks, processes, or threads in the same or any other processor in the system. Thus
the pipeline architecture initially processes events but sends the remaining processing and




the final response to the events to separately scheduled entities elsewhere in the system
(see Figure 3.) In the pipeline architecture, it is quite common for a single event to
generate processing and many other schedulable entities, resulting in communication
across many parts of network, and finally many outputs occurring at various points in the
system. From the perspective above, and the time constraints involved, the most impor-
tant performance parameter is the latency from the initial arrival of the event to the output
of each of the resulting responses. This is referred to as the end to end time constraint of
the system and may differ for each event or each type of event in the system.
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One of the key issues in any distributed system is the nature of the control flow. The flow
of control through the system strongly affects the system load balance, the number and
nature of the scheduling decisions required, and the difficulty of debugging the system
as it is constructed and tested.

In the pipeline architecture, the control flow for each event moves with be event informa-
tion through the system from the event source to each of the output destinations. This
means that the analysis of the pipeline architecture must similarly follow the control flow
sequence; the complexity of that sequence makes it somewhat difficult to predict the
response time of the pipeline system. This also means that a separate scheduling opera-
tion occurs at each point in the pipeline as the event information arrives at each of the
stages of the pipeline. This scheduling operation, of course, involves competition among
all the schedulable entities in each processor; thus, entities handling a specific event are
likely to compete not only with entities handling other events, but also with other entities
handling other components of the same event.

Analysis of the resulting scheduling operations is critical to determining the end-to-end
time constraints of the pipeline architecture. However because the sequence of schedul-
able entities handling each portion of the pipeline may, in fact, be handling muitiple types
of events in separate “pipes” running in opposite directions through the system, it be-
comes extremely difficult to define the correct priority for each schedule entity. For
example, if a system is handling radar contacts eventually displaying them on an operator

console, many of the schedulable entities may also be involved in handling operator
control operations controlling the behavior of the radar sensors.

For these reasons, task priorities gem?rally play only a minor role in pipehtr:e (sj}.'stf:gls;l :)r;
fact, the priorities of tasks in a pipeline are frequent.ly defined more by the h‘1rec (;o 2 of
the pipeline flow than by analysis of'the end-t_o-c?r}d t.1me constraints to be ac 1ev::hr. r
example, it can easily be shown that if 'task pnoptles increase as the ejw'ant. m(()lvesI fotug
a pipe, the queues of events at each mtermedlat_e s_tage will be minimized. . nl' u u;e
systems, it may become possible to have the PI:IOI'lty of the stages of tl}e ptlt;l)e met e
adjustable according to the priorities of the arriving messages, thus al.lowmg e sgfs tgn:
to preferentially a provide good response to some events wh}le p.ushmg othc?rs o ha
exhibit less stringent time constraints. At present, howe;ver, this priority handling mecha-
pism is not generally available in commercial system infrastructures.

2.4 Client-Server

The client-server architecture is similar to the pipeline architecture in that events arriving
at one or.more or nodes of the distributed system are processed throughout the system as
needed, based on the event type. Unlike the pipeline architecture, however, the control
flow for the client-server model generally remains at the same node as the initial evgnt
handler. Although the event still arrives at an initial schedulable enti.ty., .the successive
processing stages are invoked using remote procedure calls from the initial task, rather
than being invoked using a one-way message (see Figure 4.) This means that the locus
of control for any given event remains with the initial event handler, and all further
processing, including responses, are made by one or more server entities, frequently at
other nodes in the system.

Thus, the response time of the client-server architecture can be analyzed in the same way
as for the pipeline architecture, but the infrastructure controlling the scheduling of each
of the entities involved for each event is somewhat different. This is the architecture
used, for example by the CORBA[1] standard. At present, the Object Management
Group is completing a significant extension of CORBA, called Realtime CORBA 1.0 [2],
that will provide for priority propagation and scheduling throughout a real-time client-
server system. This standard is expected to make the construction and performance
analysis of real-time client-server systems significantly more robust.

At present, even with the CORBA real-time extensions, the only mechanism for managing
the response time of the client-server system is the use of priorities. As with the other
real-time architectures described here, priority can be determined using either response
time requirements or semantic importance, but it has generally been found that it is more
effective to assign priorities to messages rather than to tasks or threads. The message
priorities can then propagated to the clients. This is one of the mechanisms available in
the forthcoming CORBA real-time extension.
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An additional benefit of the client-server architecture is the ease with which the system

can be debugged relative to the pipeline architecture. With the pipeline architecture, it |

is difficult to determine the location of the control flow for a given event at any point in
time, so debugging the processing of any event, either to correct response time problems
or functional problems, can be very difficult. With the client-server architecture, because
the sequence of operations is entirely controlled by a single thread, the location of a
malfunctioning element needing further analysis becomes significantly easier to identify.

3 Using Ada in Real-Time Archtectures

There are many ways to utilize the Ada language in the construction of real-time archi-
tectures, but there are a few particularly common approaches that can be described for the
architecture families described here. For each of the approaches, the Ada constructs
commonly considered are briefly described, along with a few sample application domains
that use or are considering using each architecture family.

3.1 Timeline

In the timeline architecture, the principal Ada construct used is simply the Ada procedure
call. In the simplest systems, a small control program (a cyclic executive) is constructed
in a single Ada task that executes periodically at the minor cycle rate. In Ada 95, this task

would use the delay until statement to control the timing of each minor cycle. The cyclic |
executive maintains a count of which minor cycle is being initiated at each delay expira- |

tion, and uses a frame sequence table to determine which procedure(s) should be called
for that cycle. Thus, concurrency is avoided and no further Ada tasks are needed. Of
course, this also means that there is no need for the priorities, rendezvous, protected
objects, asynchronous transfer of control, etc.

This architecture is most commonly used for such applications as aircraft and missile
flight control, many avionics mission processors, industrial production controllers, and

other relatively simple applications. The minimal use of the more complex Ada featl.lres
makes this approach quite common for safety-critical systems for which both the applica-
tion and the run-time infrastructure must be certified.

3.2 Event-Driven

The event-driven architecture is generally constructed in Ada using a set of tasks for each
event source or type. For periodic events, the task cons-ists of a loop govgrned by the
delay until statement. For aperiodic events, the task will frequently consist of a loop
governed by an accept statement driven either by a rendezvous from another task or
directly by an interrupt arrival from the run-time environment.

A well-designed event-driven real-time application will use no more tasks than is neces-
sary to handle events with different time constraints. The most common Ada design
errors found in event-driven systems is the use of too few tasks (i.e., attempting to handle
multiple events with different time constraints in a single task,) or the use of too max}y
tasks (e.g., using the task concept for encapsulation.) Ada tasks introduce overhead in
the form of context swapping and synchronization, but when they are used to handle
separate time constraints, this overhead is readily bounded and the system’s ability to
predictably meet its time constraints at high utilization levels is greatly enhanced.

‘Task priorities should generally be chosen to be consistent with such scheduling method-

ologies as Rate Monotonic Scheduling[3] or Deadline Monotonic Scheduling, thus
providing for analysis leading to a predictable system. Proper use of the Ada protected
object for task synchronization and the Ada 95 Real-Time Annex to handle priorities can
result in a highly robust system that can meet all its time constraints. For aperiodic
events, the use of a sporadic server (generally implemented using a delay statement in
conjunction with the accept statement that triggers the event-driven task, can bound the
processor utilization that can otherwise make event-driven architectures subject to timing
anomalies under bursty load.

Event-driven system architectures are now frequently supplanting timeline systems
because of their greatly increased robustness in meeting time constraints at high resource
utilization levels, and significantly lower maintenance costs. Common exceptions are
applications requiring safety certification, since the certification agencies commonly
mandate the timeline approach. This is expected to change over the next few years as the
predictability made possible with the event-driven approach becomes more widely
understood, and as tools such as Ada Ravenscar Profile[5] become more widely available.

3.3 Pipeline

The pipeline system, like the event-driven system, is generally constructed using a set of
Ada tasks, one for each stage of each of the pipelines. Synchronization between these
tasks can be handled using the protected object, but the management of priorities is more
difficult. This is because the decomposition of the system functions into tasks is likely
to result in tasks that must be executed by event arrivals with multiple time constraints.
This is a source of widespread priority inversion, resulting in systems that can miss time
constraints even at relatively low utilization levels.
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One way to improve the processing of tasks that receive messages from sources with
disparate time constraints is to arrange for such tasks to have incoming messages arriving
in multiple queues, one for each time constraint. Then the task checks each queue in
order of increasing time constraints (non-preemptive Deadline Monotonic order), mini-
mizing the resulting priority inversion. A further useful practice is to perform only

minimal processing in tasks characterized by arrivals with disparate time constraints,
pushing more extensive processing load to tasks handling activities with single time |

constraints (and appropriate priorities.)

Presently, the pipeline approach is being used to construct command and control systems,
air traffic control, and occasionally vehicle simulation systems. It has also been occa-
sionally used for such application domains as satellite ground systems and submarine
combat control systems.

3.4 Client-Server

The client-server architecture is constructed similarly to the pipeline architecture in terms
of its use of Ada tasks, but the propagation of messages involves waiting upon a return

message to the sender in response to each message sent, thus utilizing a remote procedure |

call. Ada 95 describes such processing in the Distributed Systems Annex, although
implementations have not been quick to support it. In the meantime, systems being built

to a client-server architecture are using the Ada bindings available for CORBA, and are

expected to use the capabilities provided by the Realtime CORBA 1.0 extensions when
they become available. Thus, the client tasks can be expected to be defined as they would
be for the pipeline architecture, while the propagation of priorities to server tasks is
handled using CORBA mechanisms.

The client-server architecture has not yet been widely used by Ada real-time applications,
but with CORBA, it is expected that this architectural model wiil be used by many of the
application domains previously implemented using the pipeline approach. This would

include such application domains as air traffic control, command and control, industrial |

automation, and supervisory systems.

4 Conclusions

The choice of architecture family for a particular system has a major effect on many of

the most critical success factors for a real-time system. For uniprocessor or federated

processor applications, the most likely candidates are the timeline or event-driven archi- |
tectures; however, except for safety critical systems, the best choice in terms of applica-

tion internal complexity, maintainability, reliability, and life-cycle cost, is a well-designed
event-driven approach[4]. For distributed applications, the current choice is likely to be

the pipeline approach, with careful attention to message priority management, communi- |

cations latency (generally bounded only stochastically), and processor utilization. This
results from the immaturity and lack of resource management support from existing
infrastructures for real-time client-server approaches. With the availability of the Real-
time CORBA extensions, CORBA will provide a strongly viable client-server alternative
for many distributed applications.
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Provision of a robust synchronization alternative in Ada 95, the protecte.d object, as well
as other Ada 95 changes described in the Real-Time Annex, make Ada highly suitable for
either uniprocessor or distributed processor support of real-time systems. The Ada
facilities can be used with any of the architectural choices presented here. Of.course, not
every facility available in Ada should be used in a real-time system, but detailed recom-
mendations are beyond the scope of this paper.
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